Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials†

Yanan Wang,a,b Yingjie Tang,c Peihong Cheng,b,d Xufeng Zhou,e Zhuan Zhu,b Zhaoping Liu,e Dong Liu,c Zhiming Wang*a and Jiming Bao*a,b

The interaction of light with atomically thin nanomaterials has attracted enormous research interest in order to understand two-dimensional (2D) electron systems and develop novel opto-electronic devices. The observations of spatial self-phase modulation and the associated multiple diffraction ring patterns in liquid suspensions of 2D nanomaterials are believed to be excellent examples of strong laser interaction with 2D nanomaterials and this phenomenon has been attributed to their large electronic third-order susceptibilities. By performing a series of control experiments with liquid suspensions of graphene and graphene oxide flakes in different solvents at various temperatures under an increasing modulation frequency of laser illumination, we first show that the diffraction ring pattern has little dependence on the type of nanomaterial but strongly depends on the duration of laser illumination. A laser induced local refractive index change is then monitored by a weaker probe beam, resulting in the divergent diffraction of the probe beam that indicates a lower self-induced refractive index in the center of the pump laser beam than at its periphery: a clear signature of the thermal lens effect. Finally, we use computational fluid dynamics to simulate laser induced temperature and index changes of the suspensions. The evolution of diffraction rings is well correlated to the transient temperature distribution. Our understanding of complex laser interactions with nanomaterial suspensions and the associated thermal lens effect paves the way for further basic studies and fluid opto-electronic applications of 2D nanomaterials.

1. Introduction

The exploration of light–matter interactions was greatly accelerated by the invention of lasers in the 1960s because of their high intensity and directionality and their temporal and spatial coherence. The measurement of the refractive index of a slab of media through the transmission and reflection of a laser beam is a classic and simple experiment.1 This method breaks down when multiple conical diffractions, instead of a single laser beam, emerge from the media. The split of a single laser spot into multiple concentric diffraction rings when viewed on a far-field screen is one of the earliest examples of strong light–matter interaction.2 It is well known that diffraction rings are a result of spatial self-phase modulation (SSPM) associated with a laser induced local refractive index change. However, as to the origin of change in the refractive index, there are several competing theories. The thermal lens effect was the earliest proposed theory, which ascribes the change in the refractive index of the medium to its increasing temperature after absorbing the laser light.2–4 The nonlinear refractive index n_2 or third-order susceptibility $\chi^{(3)}$ of the medium is another contending theory for SSPM.5–6 An additional theory postulated for a refractive change is laser induced molecular reorientation or polymerization.7–12 Although the thermal lens effect is a linear optical phenomenon in principle because the refractive index change is not directly induced by the electrical field of the laser through $\chi^{(3)}$, its dependence on the laser intensity is similar to

*Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
†Electronic supplementary information (ESI) available: SEM and TEM micrographs of graphene flakes; AFM image of graphene oxide; dependence of diffraction ring number on laser power; and parameters for computational fluid dynamics. See DOI: 10.1039/c6nr08487g
those from other theories, making it difficult to be separated from various other effects.

Similar multiple diffraction ring patterns were recently observed in liquid suspensions of graphene,13–15 two-dimensional transition metal dichalcogenides (TMDS),16–19 black phosphor,20 and carbon nanotubes (CNTs),21 and have been regarded as a manifestation of their intrinsically large \(\chi^3\). Due to its high electron mobility and unique Dirac cone-like band structure, graphene exhibits large electron polarization, giving rise to huge linear and nonlinear optical responses.22 For instance, strong second harmonics generation, saturable absorbance, and four-wave mixing have been observed in atom-thick layers of graphene.23–26 However, other mechanisms may equally contribute to the observed SSPM in liquid suspensions of graphene or other nanomaterials. In fact, the thermal lens effect has accounted for SSPM in solutions of many absorbing materials such as dye molecules and \(\text{C}_6\text{H}_{12}\).27,28 Laser induced reorientation of 2D flakes is another possible cause of SSPM since liquid suspensions of 2D nanomaterials are essentially a new type of nematic liquid crystals.9,29–31

In this work, we first performed a series of control experiments with different nanomaterials, solvents, solvent temperatures, and modulation frequencies of laser intensity. A pump–probe method was then used to monitor the laser-induced change of the spatial optical index of the dispersion. Finally, we employed computational fluid dynamics to obtain the evolution and distribution of temperature of dispersion and correlate it with the dynamics of a diffraction ring pattern. Based on these observations and their good agreement with the simulation, we conclude that the observed ring pattern is a purely thermal lens effect of the dispersion and has nothing to do with the electronic nonlinear optical effect of 2D material. The role of nanomaterials is simply to absorb laser light and convert it into heat. Liquid suspensions of 1D or 2D materials provide innovative routes for the basic study of light–matter interaction and photonic applications that cannot be achieved when they are in the solid state.30–39 Due to the extreme shape anisotropy of 1D or 2D nanomaterials, their liquid suspensions are inherently anisotropic in many aspects, ranging from their optical properties and thermophysical properties to fluidic transport characteristics.35,40,41 The determination of an underlying mechanism for SSPM and the effect of laser heating on the dynamics of suspended 2D nanomaterials are essential to a better understanding and potential fluid optoelectronic device applications of 2D nanomaterials.

2. Materials and methods

Graphene flakes were synthesized via intercalation and exfoliation of natural graphite by Ningbo Morsh Technology Co., Ltd. They are a few micrometers in lateral size and have an average thickness of 2.4 nm (7 layers), as can be seen from their scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images in Fig. S1.† Graphene oxide (GO) was prepared by a modified Hummers’ method.42 They are single-layer flakes with sizes in the range of 2–10 \(\mu\)m. Detailed synthesis steps and an atomic force microscopy (AFM) image (Fig. S2†) can be found in the ESL.† Flakes of graphene or GO were then dispersed in \(N\)-methyl-2-pyrrolidone (NMP), ethanol and de-ionized (DI) water. All sample solutions had concentrations in the range of 0.005–0.01% in weight (wt%), corresponding to 0.002–0.004% in volume fraction (vol%). The suspensions were kept at room temperature (25 °C) unless otherwise stated. To obtain the diffraction rings, a 532 nm continuous-wave (CW) laser was focused by a lens (\(f = 100\) mm) on the suspensions of graphene or GO in a 10 mm cuvette. Unless otherwise stated, the concentration of graphene or GO is adjusted such that their optical transmission at 532 nm is kept nearly the same at 10–12%. A white screen was placed two meters away from the cuvette and far-field diffraction of the transmitted laser beam was recorded by a digital camera. Still images were created by extracting frames from video recordings. To modulate the intensity of the 532 nm laser, a mechanical chopper was used to turn the CW beam on and off at the frequencies of 20 Hz and 200 Hz with a 25% duty cycle. To probe the spatial refractive index change induced by the 532 nm laser, a 633 nm 10 mW laser beam is launched perpendicularly to the 532 nm beam, and its transmitted light is imaged.43

Numerical simulations were performed using the commercial computational fluid dynamics (CFD) software package Star-CCM+ to quantify the laser-heating induced temperature gradient. Since the beam path in the suspensions (10 mm) is much shorter than the 100 mm focal length, the laser beam was approximated as a collimated Gaussian beam with a diameter of 0.2 mm in the simulations. A 10 mm \(\times\) 10 mm 2D domain perpendicular to the laser beam in the \(z\) direction was modeled. The Navier–Stokes equations and the energy equation were solved simultaneously to obtain the velocity and temperature fields. The absorption of incident laser beams by the graphene or GO flakes and the subsequent thermal transport to the ambient fluid are represented as a localized heat source in the domain center, defined as \(Q(x,y) = aI(x,y)\), \(I(x,y) = \frac{2P}{\pi \rho^2} \exp(-\frac{(2x^2 + y^2)}{\rho^2})\), where \(a\) is the absorption coefficient, \(P\) is the incident laser power, and \(\rho\) is the diameter of the laser beam. Detailed parameters of the solvents for simulations, such as density, viscosity, specific heat and thermal conductivity, are included in the ESL.†

3. Results and discussion

Fig. 1 shows a typical example of a laser induced diffraction pattern in a graphene suspension. When the laser first passes through the suspension in a cuvette, an ordinary transmitted beam is observed with reduced intensity, but the laser spot of the transmitted beam begins to expand and the number of diffraction rings increases within milliseconds. The size of the ring pattern reaches the maximum at \(\sim 0.4\) seconds, and the ring pattern becomes squeezed in the vertical direction above the center of the beam and becomes stable after 1 second.
Such a two-stage development is a general feature of previous observations in liquid suspensions of graphene and 2D TMDs.13,14,16,17 The multiple diffraction rings clearly indicate a large phase shift experienced by the laser beam as each diffraction ring accounts approximately for a phase shift of 2π.9 Because the number of diffraction rings increases linearly with the laser intensity, these observations were attributed to the extraordinarily large $\chi^{(3)}$ of nearly all types of nanomaterials.13–19,21,44 The transient evolution of diffraction rings was believed to be caused by the spatial alignment of graphene flakes with the laser polarization.13,14

As mentioned earlier, the liquid suspension of graphene can exhibit a nematic phase; the multiple diffraction rings could be due to laser induced birefringence above the Freedericksz transition.9 However, this mechanism can be excluded in this case because graphene flakes are not uniformly oriented initially due to the low concentration, and the dependence of the number of rings on laser power is linear without any apparent threshold (Fig. S3 and S4). Similar ring patterns have also been reported in a solution of organic dye molecules, but were ascribed to the thermal lens effect of the solvent instead of the $\chi^{(3)}$ of the molecules.27 In the following paragraphs, we will examine the dependence of the ring patterns on conditions including the type of solvents, liquid temperature, and the duration and frequency of CW beams in order to determine whether SSPM originates from the $\chi^{(3)}$ of graphene or simply a thermal lens effect of the solvent.

If the refractive index change comes from the intrinsic $\chi^{(3)}$ of graphene, it should not depend strongly on the type of solvents or solvent temperature. Fig. 2a–c show three diffraction

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1}
\caption{Typical time development of a diffraction ring pattern of a continuous wave (532 nm) laser beam (60 mW) traversing a graphene suspension in NMP.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2}
\caption{Dependence of diffraction rings on solvent and solvent temperature of graphene suspension. (a–c) Graphene suspension in (a) NMP, (b) ethanol and (c) deionized water. Laser power: 60 mW. Images were captured when the patterns expanded to the maximum. (d–f) Graphene suspension in deionized water at (d) $-4 \, ^\circ\text{C}$, (e) $-25 \, ^\circ\text{C}$ and (f) $-60 \, ^\circ\text{C}$. Laser power: 500 mW. Images were captured after the patterns were stabilized.}
\end{figure}
patterns with graphene dispersed in NMP, ethanol and DI water when the numbers of rings achieved maximum for each case. At a laser power of 60 mW, similar numbers of diffraction rings are observed in NMP and ethanol, but almost none are observed in water. The laser power must be increased to 500 mW in order to detect similar diffraction patterns in water. Fig. 2d and e show the diffraction rings when DI water was kept at three temperatures: 4 °C, 25 °C and 60 °C. It can be seen that the diffraction rings are much fewer at 4 °C than those at higher temperatures. Another distinction between Fig. 1 and 2d, e is that the diffraction rings are much more distorted at higher laser powers, due to the laser induced natural convection of the solvent.14,15,17,19,27

The strong dependence of the diffraction ring patterns on the type of solvents and the temperature of water indicates that the change of the refractive index might not come from the high $\chi^{(3)}$ of graphene. To find out the effect of the $\chi^{(3)}$ on the SSPM, we used graphene oxide suspension for comparison, and the results are shown in Fig. 3a and b. Despite a much lower electron density and electron mobility as well as a drastically different band structure,20,45 graphene oxide exhibits a similar number of diffraction rings. Additional experiments were conducted for other nanomaterials, including conductive Au nanoparticles and insulating Co$_3$O$_4$ nanoparticles, and a similar number of diffraction rings can also be observed under the same conditions. These observations imply that SSPM has little to do with the electronic and optical properties of the nanomaterials.

It is now clear that the observed diffraction patterns are not due to the unique properties of graphene, but it still remains elusive whether they are caused by nonlinear $\chi^{(3)}$ optics or the thermal lens effect. To distinguish these two effects, we performed two additional control experiments. Fig. 3c and d show the diffraction rings when a mechanical chopper is used to modulate the intensity of the CW laser beam. The idea is to keep the magnitude of the electrical field of the laser beam constant, while reducing the duration of the CW laser beam. The number of diffraction rings decreases significantly when the beam is modulated at 20 Hz, and no rings can be observed at 200 Hz. If SSPM is a $\chi^{(3)}$ nonlinear optical effect, the diffraction rings should remain constant regardless of the CW laser modulation. The electronic or nonlinear $\chi^{(3)}$ optical response of a material is in the order of sub-picoseconds, much shorter than the duration of the modulated CW laser and the transient thermal lens effect.7,23,46

The disproof of the $\chi^{(3)}$ effect is further supported by directly probing the refractive index change induced by the laser beam.43 Fig. 4a–c show the experimental setup and diffraction of a weaker 633 nm probe laser. The effect of convection and solvent on the diffraction of the probe laser beam is similar to those observed in self-diffraction in Fig. 2. If it is a $\chi^{(3)}$ effect, the refractive index in the beam path should be larger than the surrounding liquid with the maximum in the beam center, i.e., the beam path will behave as a positive cylindrical lens for the laser probe. On the contrary, the beam path will become a negative cylindrical lens if it is a thermal lens effect of the solvent because the index decreases when the solvent temperature increases. The relative lower intensity in the center of the diffracted beam indicates a lower refractive index, confirming that it is a thermal lens effect of the liquid.43

We can conclude now that it is the temperature dependent refractive index of the solvent rather than the nonlinear refractive index n_2 of graphene or GO that is responsible for the SSPM. A similar thermal lens effect has been observed in solutions of

Fig. 3 Diffraction ring patterns with (a) graphene suspension and (b) graphene oxide suspension in NMP. Diffraction ring patterns with graphene suspension in NMP (c) without laser modulation, (d, e) with modulation at (b) 20 Hz and (c) 200 Hz. Laser power: 40 mW. Images were captured when the pattern expanded to the maximum.
absorbing molecules and can be qualitatively explained based on the laser induced local heating and temperature dependent refractive index, \(i.e. \), a thermal optic coefficient.\(^{27,43} \) When a solvent expands, its density will reduce, so does the refractive index. The transition from ordinary transmission to the full formation of diffraction rings is the time for 2D materials to absorb and convert laser light to thermal energy and then transfer the thermal energy to the solvent and establish a spatial temperature gradient. Because a temperature gradient will create fluid convection, a stable temperature distribution and flow pattern are established only when the incident laser power and thermal dissipation through thermal conduction and convection are balanced. The convection will reduce the temperature gradient above the laser spot, resulting in the squeezed diffraction rings noted earlier. The reduced laser heating time and average laser power decreases the temperature gradient in Fig. 3d and e, leading to a reduced number of diffraction rings. The reason why water requires higher laser power than ethanol and NMP to produce a similar phase shift is because water has a larger thermal capacity and higher thermal conductivity (see Table S1 and Fig. S5†). A unique feature of water is that its density reaches the maximum at 4 °C, consequently, its thermal-optic coefficient decreases when the temperature drops and becomes zero at this temperature,\(^{47} \) which explains the very few diffraction rings observed at low temperature in Fig. 2. Compared with graphene, graphene oxide has less thermal conductivity; furthermore, GO solution has a higher viscosity than graphene suspension due to GO’s hydrophilicity as opposed to the hydrophobicity of graphene. Lower thermal conductivity and high viscosity make the local temperature higher in the GO solution and thus a larger number of diffraction rings are observed than that in graphene suspension, as shown in Fig. 3b.\(^{48,49} \)

To obtain a quantitative understanding of the relationship between laser power and diffraction ring numbers, we used commercial computational fluid dynamics and performed numerical simulations of a laser induced spatial temperature field. Due to the dilute concentrations of graphene, its effects on the thermophysical properties of the solvent, such as density, thermal conductivity, specific heat and viscosity, are negligible. The time for heat transfer from graphene to the surrounding solvent after the optical absorption is also not considered since it is almost instantaneous due to the extremely small thermal mass of the graphene flakes. Fig. 5 shows the simulated temperature fields in three graphene suspensions after a laser illumination of 0.4 and 4 seconds, respectively. It is clear that at 0.4 seconds, the temperature fields are represented by a series of contour lines that are concentric with the incident laser spot, indicating that heat transfer is uniform in all directions and that the dominant heat transfer mode is thermal conduction. At 4 seconds, however, the temperature contours clearly shift upward and the difference between the center and periphery increases, which resembles the typical buoyant plume structure in natural convection.\(^{47} \) The laser induced local temperature gradient is least pronounced in the water suspension of graphene due to the fact that water has higher specific heat, higher thermal conductivity, and lower thermal expansion. Temperature gradients in ethanol and NMP are quite similar because they have similar thermal dynamic properties.

Based on the temperature distribution obtained above and the thermo-optic coefficient of solvents, the local refractive index of the fluid and the total phase shift experienced by the
laser beam can be calculated. Then, by using the Fresnel–Kirchhoff diffraction integral, the far-field Fraunhofer diffraction pattern is obtained.9,27 Because a similar detailed calculation of diffraction pattern has been reported, here we try to understand the main feature of the diffraction rings.27 First, the diffraction pattern is just the Fourier transformation of the phase retardation plane created by temperature distribution.9,27 Cylindrical phase planes in Fig. 5a and b lead to symmetrical ring patterns in Fig. 2a and b when convection is weak. An elongated phase shift in Fig. 5d and e results in squeezed rings in Fig. 1 at 1 second in the upper space of the laser beam. Secondly, the total number of diffraction rings can be estimated from the total phase shift in multiples of π. For example, for ethanol in Fig. 5a, the temperature difference between the center and periphery of the laser beam is about 2 degrees, equivalent to 15 times 2π. This number agrees roughly with 13 rings as in Fig. 2b.

Apparently the well-accepted $\chi^{(3)}$ (10$^{-7}$ esu) was used to estimate the total phase shift and explain the observed diffraction rings.13–15,21 There must be something wrong with their calculations, and a careful examination reveals two major mistakes: the use of cuvette length as the nonlinear optical path length and the conversion between nonlinear index n_2 and $\chi^{(3)}$. Let’s take our case for example. The number of graphene layers is about 90 based on 10–12% optical transmission and 97.7% transmittance of single layer graphene, so the total effective optical path length of graphene is \sim30 nm instead of 1 cm, the optical length of the cuvette.13–15 This is a large error off by five orders of magnitude. Based on $\chi^{(3)}$ versus n_2 conversion,23,50–52 we obtain a $n_2 \sim 10^{-9}$ cm2 W$^{-1}$, which is four orders of magnitude smaller than previously calculated values although the same $\chi^{(3)}$ was used.13–15 For a typical CW laser intensity of 100 W cm$^{-2}$, we then obtain a phase shift of \sim10$^{-7}\pi$, which is totally negligible compared to the thermal lens effect. Ultrafast lasers are required to observe the intrinsic nonlinear effect of graphene.52 The same estimation can be applied to TMDs, black phosphor and CNTs. Because they have optical absorption coefficients and $\chi^{(3)}$ of more or less the same order of magnitude, it is impossible for them to generate a phase shift that is seven orders of magnitude larger than that of graphene. Thus, we conclude that the same thermal effect is responsible for the observed ring patterns in their liquid suspensions.16–21

4. Conclusions

In summary, a series of generic experiments are designed to distinguish the nonlinear optical effect from other mechanisms. The temperature dependent refractive index of the solvents is found to be responsible for large laser induced spatial self-phase modulations and multiple diffraction ring patterns. The thermal lens effect is a natural consequence of optical absorption by 2D nanomaterials, and can hardly be avoided. Due to the high sensitivity of diffraction rings to solvents, the thermal lens effect can be used to measure their thermal and thermal-optical constants.48,49,53 An accurate understanding of solvent fluids and suspensions’ nanostructures as well as their interactions with light is crucial for new optical and optofluidic applications of 2D nanomaterials.

Acknowledgements

J. M. B. acknowledges support from the National Science Foundation (Career Award ECCS-1240510) and the Robert A. Welch Foundation (E-1728). Y. W. acknowledges support from the China Postdoctoral Science Foundation (2015 M582535) and the Fundamental Research Funds for Key Universities (ZYGZ2015J135).

References

This journal is © The Royal Society of Chemistry 2017

Nanoscale

20 G. Yang, Y. Zhang and X. Yan, J. Semicond., 2013, 34, 083004–083008.