Aggregation and gelation in a tunable aqueous colloid–polymer bridging system

Cite as: J. Chem. Phys. 157, 114903 (2022); https://doi.org/10.1063/5.0101697
Submitted: 02 June 2022 • Accepted: 19 August 2022 • Accepted Manuscript Online: 24 August 2022 • Published Online: 20 September 2022

Mariah J. Gallegos, Diego D. Soetrisno, Nayoung Park, et al.

COLLECTIONS

Paper published as part of the special topic on Colloidal Gels

ARTICLES YOU MAY BE INTERESTED IN

Tethered hard spheres: A bridge between the fluid and solid phases
The Journal of Chemical Physics 157, 114501 (2022); https://doi.org/10.1063/5.0101238

Multi-actuator light-controlled biological robots
APL Bioengineering 6, 036103 (2022); https://doi.org/10.1063/5.0091507

Significant quantum yield enhancement for near infrared fluorescence dyes by silica templated silver nanorods
Applied Physics Reviews 9, 031406 (2022); https://doi.org/10.1063/5.0082187
Aggregation and gelation in a tunable aqueous colloid–polymer bridging system

Cite as: J. Chem. Phys. 157, 114903 (2022); doi: 10.1063/5.0101697
Submitted: 2 June 2022 • Accepted: 19 August 2022 • Published Online: 20 September 2022

Mariah J. Gallegos, Diego D. Soetrisno, Nayoung Park, and Jacinta C. Conrad

AFFILIATIONS
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA

Note: This paper is part of the JCP Special Topic on Colloidal Gels.
Author to whom correspondence should be addressed: jcconrad@uh.edu

ABSTRACT
We report a colloid–polymer model system with tunable bridging interactions for microscopic studies of structure and dynamics using confocal imaging. The interactions between trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles and poly(acrylic acid) (PAA) polymers were controllable via polymer concentration and pH. The strength of adsorption of PAA on the particles, driven by pH-dependent interactions with polymer brush stabilizers on the particle surfaces, was tuned via solution pH. Particle–polymer suspensions formulated at low pH, where polymers strongly adsorbed to the particles, contained clusters or weak gels at particle volume fractions of $\phi = 0.15$ and $\phi = 0.40$. At high pH, where the PAA only weakly adsorbed to the particle surface, particles largely remained dispersed, and the suspensions behaved as a dense fluid. The ability to visualize the suspension structure is likely to provide insight into the role of polymer-driven bridging interactions in the behavior of colloidal suspensions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0101697

I. INTRODUCTION
Mixtures of micrometer-sized colloidal particles and polymers are widely used in applications such as paints,1,2 consumer products,3,4 pharmaceuticals,1 and feedstocks for 3D printing.5 The microscopic interactions between the particles and polymers control the mesoscale and macroscopic behavior of these suspensions. Polymers that do not adsorb onto the surface of colloidal particles induce entropic depletion attractions, whose strength and range can be tuned through the concentration and size of the added polymer.6–8 In applications that use flocculation or coagulation mechanisms9–12 such as water purification12,13 and separation processes,12 however, polymers adsorb to the surface of the particles. In these systems, polymers can bridge between the surfaces of nearby particles to generate enthalpic attractions that alter the suspension behavior.

At low polymer concentration, chains adsorb onto the surface of one or more particles simultaneously. As the polymer concentration is increased, more chains adsorb to the surface until the surfaces of the particles are fully saturated with polymers.13,14 In this limit, the adsorbed polymers act as steric stabilizers and particles are expected to exhibit repulsive interactions.15 Adding polymers beyond the amount required to saturate the surfaces of the particles will not further increase the strength of bridging attractions.16

Because the type of interaction depends on the polymer concentration, bridging systems exhibit state diagrams that are distinct from those of well-studied depletion systems. The state diagram of bridging attractions exhibits island-shaped spinodal and binodal curves,17 in contrast to the spinodal curve that characterizes depletion-driven arrest.18 Dynamic arrest in bridging systems is driven by kinetic arrest at the percolation line,17 in contrast to the arrested phase separation typically observed in depletion suspensions.19,20 The state behavior of these systems, however, depends on the microscopic interactions between the particles, which are dictated by the particle, polymer, and solution chemistries.

In one class of systems, bridging interactions driven by electrostatic attractions between oppositely charged particles and polymers have been generated using silica particles and poly(ethylene imine)21 and polystyrene particles and poly(N-isopropylacrylamide).22,23 In a second class of systems, bridging attractions are generated by the formation of hydrogen bonds between silica particles and poly(vinyl alcohol).24-26 The strength of the bridging interactions are tuned through various methods, including particle volume...
fraction, polymer concentration, ionic strength, and solution pH. Most extant bridging systems, however, use particles that are too small to be optically resolved and/or that are denser than the surrounding solvent, such that gravity may alter flocculation.

Here, we develop a colloid–polymer bridging system in which the strength of the polymer adsorption can be tuned through the pH of the suspension and investigate its structure and dynamics. We synthesized core–shell colloidal particles composed of two different methacrylates that were sterically and electrostatically stabilized with surface-grafted polymer brushes and refractive index- and density-matched to high dielectric solvents. Subsequently, we induced bridging attractions between the colloidal particles by adding poly(acrylic acid) (PAA), which forms hydrogen bonds with the steric stabilizer polymer brushes on the particle surfaces. Using dynamic light scattering (DLS), we show that polymer adsorption depends on the concentration of the polymer and solution pH. Using confocal microscopy, we characterize the microscopic structure and dynamics of two series of samples at constant volume fractions ϕ = 0.15 and 0.40. As the pH is decreased, more bonds form between particles, and the dynamics become increasingly arrested and more heterogeneous, consistent with aggregation. These changes in structure and dynamics are more pronounced at intermediate than at high polymer concentrations in the total volume. The creation of a pH-controlled and density-matched bridging system that is compatible with confocal microscopy enables future experiments to connect particle interactions to suspension state behavior and rheological properties.

II. MATERIALS AND METHODS

A. Particle synthesis

All chemicals were purchased from Sigma-Aldrich. Poly (2,2,2-trifluoroethyl methacrylate-co-tert-butyl methacrylate) (TtMA) core–shell particles were synthesized by adapting existing protocols. Briefly, our protocol entails: (i) synthesis of fluorescent particle cores; (ii) growth of a non-fluorescent shell; and (iii) growth of charged stabilizer polymers on the particle surface. Cross-linked core–shell particles of diameter 1.63 μm with dispersity D = 0.07 were synthesized using a volumetric ratio of 45:55 of 2,2,2-trifluoroethyl methacrylate (TFEMA) to tert-butyl methacrylate (tBMA). This ratio was chosen to produce particles that could be density- and refractive index-matched to 80 (w/w)% glycerol–water. Rhodamine B methacrylate was co-reacted during the synthesis to fluorescently label particles for confocal imaging. Ethylene glycol dimethacrylate was used as a cross-linker for the fluorescent monomer during core precipitation polymerization. The initiator–monomer, 2-(2-bromoisobutyryl oxy)ethyl acrylate, was added during the core and shell synthesis as a sacrificial inimer to act as a growth initiator for the charged surface polymer in the final step of the synthesis. Finally, a charged copolymer of 2-acrylamido- methyl-1-propanesulfonic acid and dimethylacrylamide was grown via Atom Transfer Radical Polymerization (ATRP), using a 1:1 input ratio of methanol:water to create a negatively charged brush surface. After synthesis, the particles were collected and washed by centrifugation with de-ionized water at least five times. After final centrifugation, glycerol was added to the pellet to obtain a suspension with particle volume fraction of ϕ = 0.45 in 60 (w/w)% glycerol–water. This suspension was centrifuged once more for up to 2 h and glycerol was added to the pellet to obtain a final volume fraction ϕ = 0.48 in 80 (w/w)% glycerol–water. The solution was centrifuged again at 2000 g for 3 min to remove bubbles and then stored in a refrigerator.

B. Particle characterization

The hydrodynamic diameter of core, shell, and brush-coated TtMA particles were measured using dynamic light scattering (DLS) on an ALV-GmbH instrument (Langen, Germany) with a 5000 EPP Multiple tau Digital Correlator. Five correlation functions per angle were collected for 60 s for scattering angles of 60°, 75°, 90°, 105°, and 120°. The temperature was held constant at 25 °C using a water bath. The data were fitted using the method of cumulants using a single exponential decay,

\[g^{(2)}(τ, q) - 1 = β \exp(-2Γτ) \left(1 + \frac{μ_2}{2} τ^2 \right). \]

where β = 1 is a correction factor that depends on the instrumental scattering geometry, Γ(q) is the average decay rate, τ(q) is the exponential decay time, and μ₂ is the second moment of the distribution. Subsequently, we calculated the diffusion coefficient via \(D = k_B T/D\eta \), where \(k_B \) is the Boltzmann constant, \(T \) is temperature, and \(η \) is the solution viscosity; we also determined the dispersity \(D = μ_2/Γ^2 \). We report \(D_H \) and the 95% confidence interval.

The zeta potential \(ζ \) of the particles was measured using a Nicomp 380 ZLS zeta sizer. For these measurements, the particles were diluted to \(ζ = 0.001 \) in a 10 mM Trizma buffer solution at pH 7.5. The zeta potential of the TtMA particles was \(ζ = -72 ± 1 \) mV, consistent with the literature values.

C. Polymer solution preparation

Glass vials were cleaned with toluene and left to dry. Dried vials were washed 5 times with Millipore water and placed into an oven at 100 °C for 2 h. Poly(acrylic acid) (PAA; Sigma-Aldrich, 450 kDa) was weighed and poured into the clean glass vials. 5 ml of 80 (w/w)% glycerol–water was pipetted into the vial with the polymer and sealed with Parafilm. The polymer stock was placed on a horizontal mixer at 7 rpm for up to 10 days until the solution was completely homogenized. Solutions were taken off the roller and stored in a desiccator.

D. Polymer adsorption characterization

To determine whether the PAA polymers adsorbed to the particle surfaces, we measured the size of the particles in the presence of various low concentrations of PAA using DLS (Anton Paar instrument; Graz, Austria). We prepared suspensions of particles at \(Φ = 10^{-5} \) in 80 (w/w)% glycerol–water with 5 mM NaCl and 10 mM acetate buffer at three pH values (3.8, 4.7, and 5.6) and with three concentrations of PAA (0, 0.1, and 0.2 mg ml⁻¹). Bridging suspensions were conducted at low particle fraction and polymer concentration to avoid multiple scattering during data collection. Twelve correlation functions of 60 s duration were measured for...
each of the nine suspensions at angles 15°, 90°, and 175°. The temperature was held constant at 25°C.

For suspensions without PAA, correlation functions were fit to a single-exponential cumulant function [Eq. (1)]. For suspensions with PAA, the DLS correlation functions were fitted using a double exponential model,

$$g^{(2)}(r,q) = A_1 \exp(-\Gamma_1 r) + A_2 \exp(-\Gamma_2 r)^2 + \epsilon,$$

where A_1 and A_2 are the amplitudes and τ_1 and τ_2 are the characteristic decay rates for the two species. Two diffusion coefficients D_{HL} were calculated from the decay rates [Eq. (2)] via $\Gamma = D_{HL} q^2$, where $X = S, L$. From these diffusion coefficients, we calculated the hydrodynamic diameters d_{HL} and $d_{H,L}$ using the Stokes–Einstein equation.

E. Bridging suspension preparation

We prepared stock suspensions of colloidal particles ($\phi = 0.49$) with sodium chloride (M = 70 mM) and acetate buffer (M = 50 mM), and stock solutions of PAA (12.5 and 25 mg ml$^{-1}$) in 80% (w/w) glycerol–water. Stocks were tumbled horizontally in clean glass vials and then mixed to generate suspensions for imaging experiments with the desired volume fraction ($\phi = 0.15$ or 0.40) and PAA concentration (0, 0.7, or 2.4 mg ml$^{-1}$). The concentration of PAA is given in the total sample volume and is not corrected for particle volume fraction in final suspensions. Suspensions were tumbled for 3–4 days for $\phi = 0.15$ and up to a week for $\phi = 0.40$ to ensure that they were homogenized. After tumbling, suspensions were centrifuged at 2000 g for 3 min to remove bubbles in the solution.

The glass chambers for imaging experiments were fabricated using glass cover slides and UV-curable epoxy (Norland Optical). A microscope glass slide (VWR) was cut into two 22 mm pieces. These glass slide pieces were attached to a glass cover slip (Gold Seal) of 48 \times 65 \times 0.15 mm3. A third cover slip (Fisherbrand) of dimensions 22 \times 22 \times 0.2 mm3 was attached to the top of the cut glass slide to form a chamber. Approximately 100 μl of a given suspension was pipetted into the chamber, which was subsequently sealed using the UV-curable epoxy. The quiescent suspensions were imaged roughly 30 min after mixing. Confocal micrographs of bridging suspensions are shown in the supplementary material for $\phi = 0.15$ (Fig. S6) and $\phi = 0.40$ (Fig. S7).

F. Confocal microscopy and image analysis

A Leica DMi8 fluorescence microscope with confocal head series Leica SP8 equipped with a 63× objective and oil-immersion objective was used to image all suspensions. To examine the 3D structure of the suspensions, a series of 2D images were captured at vertical positions ranging from 25 to 65 μm separated by a distance Δz of 0.1 μm. Five of these 3D z-stacks were collected at 13.8 fps at different locations in the suspension. To characterize the particle dynamics, 2D images were collected as a function of time at a vertical location of 30 μm above the bottom of the cover slip. Five 2D time series, each consisting of 1000 frames collected at 9.4 fps, were acquired at different locations in the suspension.

A particle tracking algorithm was used to locate the particle centroids (in 2D and 3D) and track their positions over time (in 2D only). We report a static tracking error of ±60 nm determined from a dilute particle suspension ($\phi = 0.05$) in the absence of the polymer to ensure that particles are fully diffusive. The radial distribution function $g(r)$, contact number (CN), and number density fluctuation $NDF = [N(r) - \langle N(r) \rangle] / \langle N(r) \rangle$ were calculated from analysis of the 2D images. The ensemble-averaged mean-square displacement MSD = $\langle (x(t + \tau) - x(t))^2 \rangle$ and the self part of the van Hove correlation function $G(x, \tau) = \frac{1}{N} \langle \sum_{i=1}^{N} \delta(x - [x_i(t + \tau) - x_i(0)]) \rangle$ were calculated from analysis of the 2D image time series.

III. RESULTS AND DISCUSSION

A. pH-dependent polymer adsorption drives particle aggregation

We designed an experimental system with pH-controllable bridging interactions between colloidal particles. Based on earlier studies, we expect that the interaction is driven by hydrogen bonding between PAA and either or both of the grafted polymers on the surface of the particle. The steric stabilizer, poly(vinylpyrrolidone) (PVP), forms strong hydrogen bonds with PAA at low pH; similarly, the electrostabilizer, N,N-dimethylacrylamide (DMA), strongly bonds to PAA under acidic conditions. The strength of the hydrogen bonds is expected to decrease with increasing pH. At low pH, strong bridging interactions are expected to lead to large clusters of particles, as shown schematically in Fig. 1(a). Increasing the pH is expected to reduce the strength of polymer-mediated bridging attractions and decrease the number of polymers adsorbed...
on the particle surface. At sufficiently high pH, PAA is expected to have no affinity for the particle surface, and no polymer adsorption is expected to occur. Thus, particles are expected to remain dispersed in solution at sufficiently high pH.

To test this picture, we assessed the extent of particle aggregation as a function of pH using dynamic light scattering (Anton Paar). The polymer concentration in this adsorption study is low enough such that the effective bridging attraction between particles should increase with the polymer concentration. In the absence of the polymer, the intensity–intensity correlation functions exhibit a single decay [Figs. S4(a), S4(d), and S4(g) in the supplementary material], and the hydrodynamic diameter extracted from fits of Dq^2 vs Γ is 1.65 μm. Upon addition of the polymer, the intensity–intensity correlation functions exhibit two decays [Figs. S4(b), S4(c), S4(e), S4(f), S4(h), and S4(i) in the supplementary material]. Using the Stokes–Einstein equation, we calculated two diameters $d_{1,5}$ and $d_{4,1}$ from the two decay times. The diameter associated with the shorter decay, $d_{1,5}$, is of the order of magnitude of 20–90 nm and does not vary with polymer concentration or pH within the experimental error [Fig. 1(b)]; thus, it likely corresponds to aggregates of the free polymer in suspension. The diameter associated with the slower decay, $d_{4,1}$, exceeds 1500 nm and corresponds to the typical size of a particle or aggregate of particles in solution. At pH 5.6, $d_{4,1}$ grows slightly to 1.05d_{4} as the polymer concentration is increased. At a fixed concentration of polymer, $d_{4,1}$ increases as the pH is decreased [Fig. 1(c)]. Together, these results suggest that particles and polymers remain largely dispersed at pH 5.6. At lower pH, however, the sharp increase in $d_{4,1}$ upon increasing polymer concentration or decreasing pH is consistent with the formation of aggregates of increasing size. This aggregation is due to bridging of the polymers between multiple particles. Thus, the DLS experiments are consistent with the schematic in Fig. 1(a).

B. Behavior at $\phi = 0.15$

To determine the effects of pH-dependent bridging on suspension behavior, we first examined the local structure of suspensions of $\phi = 0.15$, with and without added polymer and at three values of pH (3.8, 4.7, and 5.6). In the absence of the polymer, the radial distribution function $g(r)$ = 0 for $r/2a$ = 1 and increases to 1 for $r/2a$ > 1 for all three pH values [Fig. 2(a)]. The slope in $g(r)$ around $r/2a$ = 1 arises from dispersity in the particles and likely a weak repulsion between the particles. This approximately step-function behavior indicates that the particles are well dispersed and not strongly spatially correlated at any pH value investigated. We also calculated the contact number (CN) distribution, using a cutoff value of $r/2a = 1.71$ that was determined from the first minimum in $g(r)$ of the strongest gel. This length scale ($r/2a = 1.71$) is somewhat larger than the sum of the particle and polymer diameters. The increased size may result from any of the following: size dispersity, particle tracking error, and/or bridging distance. The contact number distribution is peaked at 2 for all suspensions [Fig. 2(b)]. CN is not usually calculated in the absence of attraction due to the appearance of the peak even in concentrated suspensions of uniformly dispersed particles. We include this distribution, however, to facilitate a comparison of the particle distribution in suspensions without polymer addition to the suspension at pH 5.6, in which the particles should also be well dispersed.

Pronounced changes in $g(r)$ and the CN distributions with pH are observed upon addition of the polymer. For suspensions with PAA concentration of 0.7 mg ml$^{-1}$, $g(r)$ approximates a step function for pH 5.6, similar to that observed in the absence of the polymer [Fig. 2(c)]. When the pH is lowered to 4.7, however, a sharp local maximum appears at $r/2a$ = 1, consistent with the formation of interparticle bonds. As pH is further decreased to 3.8, the maximum at $r/2a$ = 1 increases in height, and a second local maximum appears at $r/2a \approx 1.8$. These changes are consistent with formation of first- and second-neighbor shells often found in arrested gel-like systems. We note that the value of the radius at the maximum in $g(r)$ is less than the sum of the particle size and PAA contour length (values reported in the supplementary material), but larger than the sum of the particle size and R_g. The maximum in the contact number distribution shifts to greater CN (+4) as pH is decreased [Fig. 2(d)], indicating that the average number of nearest neighbors is increased. Similar structural changes with pH are observed at a higher concentration of added polymer, 2.4 mg ml$^{-1}$. Compared with 0.7 mg ml$^{-1}$, the first maximum in $g(r)$ at pH 3.8 is shorter [Fig. 2(e)]. The position of the maximum in CN is at low pH, indicating that particles are in contact. This value is greater than that observed for suspensions without added polymer (maximum in CN at $\phi = 2$) but less than that in suspensions with polymer concentration 0.7 mg ml$^{-1}$ [Fig. 2(f)].
The suspension structure on larger length scales also varies with PAA concentration and pH. 3D renderings of suspensions at constant PAA concentration of 0.7 mg ml$^{-1}$ reveal that the structure becomes more heterogeneous as the pH is decreased from 5.6 to 3.8 [Figs. 3(a)–3(c)]. To quantify these changes in cluster structure, we calculate the number density fluctuations (NDF) at a normalized length scale of $a/L = 0.16$, which corresponds to a length scale of $L = 10 \mu$m. This length scale was chosen as the location of the maximum in the NDF of the strongest gel (0.7 mg ml$^{-1}$ PAA) at pH 5.6. The NDF approaches one for larger values of a/L. At pH 5.6, the NDF is low and approximately independent of polymer concentration, indicating that the particles remain uniformly dispersed in gels, whereas the low NDF at high pH indicates that the structure is more uniform on these length scales as expected for fluids.

We characterized the dynamics of particles in suspensions by calculating the ensemble-averaged mean-square displacement (MSD) and the self part of the van Hove correlation function at a lag time $\tau = 5$ s. MSDs are reported in absolute time, which does not account for changes in background viscosity caused by the presence of non-bridged polymers. MSDs with rescaled delay time are presented in the supplementary material for suspensions with PAA concentration and pH $\phi = 0.15$ and no added polymer, the logarithmic slope of the MSD is 1, indicating that particles in these suspensions undergo normal diffusion independent of pH. At higher PAA concentration of 2.4 mg ml$^{-1}$, however, decreasing pH does not strongly affect the NDF. The high NDF value at low pH is consistent with the cluster formation seen in gels, whereas the low NDF at high pH indicates that the structure is more uniform on these length scales as expected for fluids.

Upon addition of PAA, the particle dynamics depend on the pH of the solution. For $\phi = 0.15$ and PAA concentration of 0.7 mg ml$^{-1}$, the logarithmic slope of the MSD for pH 5.6 is still ~ 1 at long lag times [Fig. 4(c)] and the van Hove distributions are Gaussian [Fig. 4(d)], as also observed for suspensions without PAA. Upon decreasing the pH to 4.7, however, the MSD is smaller than that at pH 5.6 on long time scales, and the logarithmic slope is less than 1. The van Hove correlation function for this suspension exhibits extended tails at high displacements. When the pH is further decreased to 3.8, the MSD is more subdiffusive (lower logarithmic slope at long times), and the van Hove correlation function is more non-Gaussian when compared to the suspensions at pH 4.7. The decrease in MSD and the development of non-Gaussian tails in the van Hove correlation functions are consistent with increasing aggregation of the particles as pH is decreased below 5.6.

When the PAA concentration is further increased to 2.4 mg ml$^{-1}$, the dynamics do not exhibit strong changes with pH. The MSDs for these suspensions are subdiffusive for all pH values and have similar logarithmic slopes on long time scales [Fig. 4(e)] and the van Hove correlation functions are slightly non-Gaussian at all pH values [Fig. 4(f)]. These results suggest that increasing the concentration of PAA to 2.4 mg ml$^{-1}$ leads to dynamics that are consistent with aggregation, but the extent of aggregation appears to be less than that observed at PAA concentration of 0.7 mg ml$^{-1}$.

\[\text{FIG. 3.} \text{ (a)–(c) 3-D renderings (thickness } \Delta z = 14 \mu \text{m) of suspensions with } \phi = 0.15 \text{ and polymer concentration of } 0.7 \text{ mg ml}^{-1} \text{ and pH (a) 3.8, (b) 4.7, and (c) 5.6. Particle color indicates its contact number (CN). (d) Number density fluctuation (NDF) as a function of polymer concentration } C_{\text{PAA}} \text{ for suspensions with } \phi = 0.15 \text{ and various pH, calculated at a length scale } a/L = 0.16 \text{ that corresponds to the location of the maximum in NDF for the strongest gel.} \]

\[\text{FIG. 4.} \text{ (a), (c), and (e) Normalized MSD } \langle \Delta x^2 \rangle / (2a)^2 \text{ as a function of delay time } \tau \text{ for } \phi = 0.15 \text{ suspensions with (a) 0 mg ml}^{-1}, (c) 0.7 \text{ mg ml}^{-1}, \text{ and (e) 2.4 mg ml}^{-1} \text{ PAA and pH 3.8 (squares), 4.7 (triangles), and 5.6 (diamonds). (b), (d), and (f) van Hove correlation function as a function of displacement } \Delta x (\mu \text{m}) \text{ at delay time } \tau = 5 \text{ s for } \phi = 0.15 \text{ suspensions with (b) 0 mg ml}^{-1}, (d) 0.7 \text{ mg ml}^{-1}, \text{ and (f) 2.4 mg ml}^{-1} \text{ PAA and pH 3.8 (squares), 4.7 (triangles), and 5.6 (diamonds).} \]
Together, the measurements of structure and dynamics for suspensions with $\phi = 0.15$ and various concentration of PAA indicate that suspension behavior can be tuned through both polymer concentration and pH. In the absence of PAA, particles are well dispersed, as indicated by the fluid-like structure and Fickian diffusion. Upon addition of 0.7 mg ml$^{-1}$ PAA, pronounced changes in the particle structure and dynamics at low pH are consistent with aggregation. When the concentration of PAA is further increased to 2.4 mg ml$^{-1}$, changes in the structure and dynamics consistent with aggregation are still observed but are less pronounced than those observed at lower PAA concentrations.

One explanation for the weaker aggregation at higher polymer concentration is that the surfaces of the particles may become saturated with the bridging polymer. Such saturation is sometimes observed in bridging systems. For example, in a system of polystyrene microspheres and poly(N-isopropylacrylamide) microgels, high concentrations of the microgel bridging agent led to complete surface saturation of the microspheres and to depletion attractions that were weaker than the low-microgel-concentration bridging attractions. We conducted steric stabilization experiments (Fig. S10 in the supplementary material) and determined that steric stabilization for $\phi = 0.15$ occurs at 5.7 ± 0.6 mg ml$^{-1}$. At 2.4 mg ml$^{-1}$, it is likely that some of the particles have become saturated with the polymer, consistent with the weaker structure formation. Thus, the attractive bridging interactions that dictate the suspension properties may be partially mitigated by steric repulsion when the concentration of added polymer is sufficiently high.

C. Behavior at $\phi = 0.40$

We also investigated the behavior of the tunable bridging system at a higher particle volume fraction of $\phi = 0.40$, where the average distance between the particles ($\approx 1.4 \mu m$) is smaller than that at $\phi = 0.15$ ($\approx 4.7 \mu m$). In the absence of the polymer, the pair correlation functions $g(r)$ measured at pH 3.8, 4.7, and 5.6 exhibit two local maxima: the maximum at $r/2a \approx 1$ corresponds to the interparticle separation, whereas the maximum at $r/2a \approx 2$ corresponds to the formation of a second-neighbor shell expected for dense systems [Fig. 5(a)]. The local maximum in contact number shifts to higher CN ≈ 4 as compared to the $\phi = 0.15$ suspensions, consistent with the greater particle density [Fig. 5(b)].

Addition of the polymer at a concentration of 0.7 mg ml$^{-1}$ does not qualitatively alter $g(r)$ or the CN distribution at pH 5.6, indicating that the structure remains that of a dense suspension [Fig. 5(c)]. Upon decreasing the pH to 4.7, however, the local maximum at $r/2a \approx 1$ increases in height, consistent with the formation of interparticle bonds. The position of the maximum in CN shifts to the right, indicating that the average number of nearest neighbors increases [Fig. 5(d)]. A further decrease in the pH to 3.8 leads to an additional increase in the height of the local maximum, consistent with enhanced structural correlations. At pH 3.8, however, the average number of nearest neighbors is similar to that at pH 4.7.

At the highest polymer concentration investigated, 2.4 mg ml$^{-1}$, decreasing pH also leads to structural changes that are consistent with increased bond formation. The magnitude of the changes in local structure with pH, however, is less pronounced than that observed at 0.7 mg ml$^{-1}$. For example, both the maximum in $g(r)$ at $r/2a \approx 1$ and the local maximum at $r/2a \approx 2$ are shorter at high pH [Fig. 5(e)]. Likewise, the series at 2.4 mg ml$^{-1}$ exhibits a modest shift in the CN distribution to the right with increasing pH [Fig. 5(f)]. The weaker structural evolution at higher polymer concentration is consistent with the trend observed for $\phi = 0.15$. Similar behavior was observed in a silica–poly(ethyleneimine) bridging system at $\phi = 0.3$, where the contact number did not appreciably increase at high polymer concentrations.21 In Ref. 21, the lack of structural changes at high polymer concentration was attributed to the high level of crowding in these suspensions. In our $\phi = 0.40$ systems, we posit that lack of structural evolution with increasing polymer concentration is also due to the high crowding.

Changes in the local structure with pH are again accompanied by structural changes on large length scales for the $\phi = 0.40$ suspensions. Reconstructions of confocal micrographs for a series of suspensions with 0.7 mg ml$^{-1}$ show that the structure becomes increasingly heterogeneous as the pH is decreased [Figs. 6(a)–6(c)]. Following the protocol used for $\phi = 0.15$ in Fig. 3(d), we calculate the NDF at $a/L = 0.10$, corresponding to a length scale of 16 μm, for which the strongest gel for $\phi = 0.40$ exhibits a maximum in the NDF. For all $\phi = 0.40$ suspensions, the NDF at a given pH and polymer concentration is less than that of the corresponding suspensions with $\phi = 0.15$ [Fig. 6(d)], reflecting the greater structural uniformity.
expected at higher ϕ. Trends in NDF upon changing the system parameters are qualitatively similar to those observed at $\phi = 0.15$: the NDF is independent of pH in the absence of the polymer and independent of polymer concentration at pH 5.6; as the pH is decreased from 5.6 to 3.8, the NDF increases markedly for polymer concentrations of 0.7 mg ml$^{-1}$ but only slightly for polymer concentration of 2.4 mg ml$^{-1}$. As also observed for $\phi = 0.15$ suspensions, the NDF for $\phi = 0.40$ suspensions with polymer concentration of 2.4 mg ml$^{-1}$ is less than that at 0.7 mg ml$^{-1}$ for equal pH. The decrease in NDF between $\phi = 0.15$ and 0.4 suspensions is due to the decrease in compressibility and increased uniformity at higher particle volume fraction.34,35

Finally, we examined the dynamics of suspensions with $\phi = 0.40$. The MSD of a $\phi = 0.40$ suspension with a given pH and polymer concentration is lower than that of the corresponding suspension at $\phi = 0.15$, reflecting the slowing of dynamics at higher particle concentrations. In the absence of the polymer, the MSD scales as a power law with exponent < 1 at long delay times, indicating that the suspension dynamics are subdiffusive as expected for dense fluids [Fig. 7(a)]. The van Hove correlation functions exhibit slight non-Gaussian tails, consistent with dynamic heterogeneity, but do not change as a function of pH [Fig. 7(b)]. For suspensions with polymer concentration of 0.7 mg ml$^{-1}$, decreasing the pH leads to dynamics that are slower and increasingly subdiffusive; at pH 3.8, the MSD is nearly constant for lag times $\tau < 10$ s, indicating that particles are nearly arrested on these time scales (Fig. 7(c)). The van Hove correlation functions exhibit non-Gaussian tails, again consistent with dynamical heterogeneity [Fig. 7(d)]. At the highest polymer concentration, 2.4 mg ml$^{-1}$, the MSD again decreases in magnitude and becomes more subdiffusive as pH is decreased, but the extent of changes is less pronounced than that for the lower polymer concentration ([Fig. 7(e)]; the corresponding van Hove correlation functions became slightly more non-Gaussian ([Fig. 7(f)]. Together, the dynamic metrics for $\phi = 0.40$ samples are consistent with a decrease in available free volume space occupied by particles and polymers. Curvature in $\phi = 0.40$ [Figs. 7(a), 7(c), and 7(e)] reflects a crossover between dynamic regimes arising from the presence of disperse aggregates.

The measurements of structure and dynamics for suspensions with $\phi = 0.40$ and various concentrations of PAA show that tuning the bridging interaction through pH can be used to modulate arrest in dense suspensions. Whereas a dense fluid without appreciable clustering is observed in the absence of added polymer, changes in suspension structure and dynamics upon lowering the pH in suspensions with 0.7 mg ml$^{-1}$ are consistent with the formation of a space-spanning arrested network. Qualitatively similar, but quantitatively smaller changes with pH are observed for suspensions with 2.4 mg ml$^{-1}$. The polymer concentrations are far below that needed for steric stabilization at $\phi = 0.40$, 15 \pm 2 mg ml$^{-1}$, suggesting that the modest changes with pH observed at higher polymer concentration are a result of crowding by particles and polymers.

IV. CONCLUSION

We developed a model bridging system consisting of TtMA copolymer particles and an adsorbing polymer, PAA, where the interparticle interactions can be tuned through the pH, polymer concentration, and particle concentration, and showed how changes in the interactions affect the suspension structure and dynamics using confocal microscopy. With the addition of polymers (0.7 mg ml$^{-1}$), suspension properties could be tuned from fluid-like at high pH to...
clustered or gel-like at low pH. A transition to solid-like behavior upon decreasing the pH was also observed at a polymer concentration of 2.4 mg ml$^{-1}$, but the structural and dynamic changes with pH were less pronounced than those observed at lower polymer concentrations. For $\phi = 0.15$, this finding likely reflects the onset of steric stabilization of some of the particles, whereas at $\phi = 0.40$, this finding likely reflects the overall high crowding in these suspensions.

We have shown that variation of interparticle interactions in a bridging system through pH and polymer concentration can lead to stronger or weaker gels. The interparticle interactions in the bridging system reported here can be tuned through pH and polymer concentration. Further, this system is compatible with confocal imaging and is suitable for rheological measurements. Thus, we anticipate that this system will enable studies of microstructure–property relationships in flocculated colloidal suspensions. For example, the chemistry of this system is similar to our earlier-developed depletion system, and thus can be used to directly compare the structures formed under entropic (depletion) vs enthalpic (bridging) interactions. In addition, polymers adsorbed to the particle surface can also generate interesting rheological properties such as shake-gels,26,40 rheopexy,39,40 and thixotropy.11 We anticipate that this system can be used to investigate the microstructural origins of these interesting flow properties by tuning the particle and polymer sizes.

SUPPLEMENTARY MATERIAL

See the supplementary material for SEM images of the TiMA particles (Fig. S1), shelf life and stability of the TiMA particles, intrinsic viscosity measurements of PAA, contour length calculation of PMMA, effects of the steric stabilizer PVP on PAA-driven particle aggregation (Fig. S2), zeta potential of TiMA copolymer particles, DLS measurements of particle aggregation in water and acetate buffer (Fig. S3), hydrodynamic diameters of DLS measurements in 80(w/w)% glycerol–water (Fig. S4), salt concentration effects on charge screening of TiMA particles (Fig. S5), mass of polymers per mass of particles (Table S1), confocal micrographs of all suspensions (Figs. S6 and S7), MSDs as a function of a rescaled time to account for changes in background viscosity (Fig. S8), van Hove correlation functions at short lag times (Fig. S9), determination of a/L for number density fluctuations, critical polymer concentration for surface saturation (Fig. S10), and phase diagram (Fig. S11).

ACKNOWLEDGMENTS

We thank Peter Vekilov for use of his dynamic light scattering setup (ALV-GmBH instrument; Langen, Germany) and Alamgir Karim for use of his dynamic light scattering setup (Litzers instrument; Graz, Austria).

This work was supported by the National Science Foundation (Grant No. CBET-1803728) and the Welch Foundation (Grant No. E-1869).

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Mariah J. Gallegos: Data curation (lead); Formal analysis (lead); Investigation (equal); Visualization (equal); Writing – original draft (lead); Writing – review & editing (equal). Diego D. Soetrisno: Formal analysis (supporting); Investigation (supporting); Writing – review & editing (supporting). Nayoung Park: Conceptualization (lead); Investigation (supporting); Methodology (lead); Writing – review & editing (supporting). Jacinta C. Conrad: Funding acquisition (lead); Project administration (lead); Resources (lead); Supervision (lead); Writing – original draft (supporting); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

D. Blair and E. Dufresne, The Matlab particle tracking code repository.

