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Abstract:  We demonstrate the effectiveness of intrinsic Raman 
spectroscopy (IRS) at reducing errors caused by absorption and scattering.  
Physical tissue models, solutions of varying absorption and scattering 
coefficients with known concentrations of Raman scatterers, are studied. 
We show significant improvement in prediction error by implementing IRS 
to predict concentrations of Raman scatterers using both ordinary least 
squares regression (OLS) and partial least squares regression (PLS).  In 
particular, we show that IRS provides a robust calibration model that does 
not increase in error when applied to samples with optical properties outside 
the range of calibration.     
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1. Introduction  

In many applications of Raman spectroscopy the analytes of interest are embedded in a turbid 
medium, in which the absorption and elastic scattering coefficients, μa and μs, respectively, 
may significantly distort the measured Raman spectrum, in contrast to the intrinsic Raman 
spectrum obtained from a transparent medium.  A prime example, of interest to us, is 
biological tissue analysis.  The apparent contributions of the Raman spectral features, and 
therefore the shape of the spectrum, may be altered as a result of the wavelength dependence 
of μa and μs.  Additionally, the overall Raman intensity may be altered as a result of turbidity-
induced changes in sampling volume, defined as the overlap between the three-dimensional 
delivery and collection volumes, which affects the propagation of both the excitation and 
scattered Raman light.  Time- or sample-dependent turbidity variations can further complicate 
the extraction of quantitative information.   

In order to account for such non-analyte-specific variability in building a multivariate 
calibration model, samples with significant extremes of variability are incorporated into the 
calibration data set. However, this approach sacrifices accuracy because of increased model 
complexity, not to mention the added costs associated with inclusion of large sample numbers 
for in vivo studies.  The better solution is to directly reduce the turbidity variability through 
prior or additional information such that a more accurate model is obtained and prediction 
error is reduced.  

Corrections for turbidity variations in the form of spectral shape distortions have been 
extensively pursued in fluorescence spectroscopy [1-5]. However, in many cases the recorded 
spectra are normalized and information about sampling volume variations are lost, rendering 
the analysis semi-quantitative. For quantitative studies, variations in the sampling volume are 
critical because of the relationship to the absolute number of analyte molecules sampled.  

For quantitative Raman spectroscopy, corrections for both shape and intensity distortions 
have been developed [6-9], but the existing methods are designed for media with isotropic 
elastic scattering, and in which only one optical property changes at a time.  Thus, they are not 
suitable for our application to biological media, in which elastic scattering is anisotropic [10, 
11] and both μa and μs can vary simultaneously and independently.  

The underlying principle of all of these correction methods is that Raman scattering or 
fluorescence at a given wavelength is proportional to elastically scattered light (diffuse 
reflectance) at the same wavelength.  Therefore, with the aid of a broadband light source to 
measure diffuse reflectance, distortions in Raman and fluorescence spectra can be removed.   

In the companion paper (Part I), we present the theory for a method for correcting these 
distortions called intrinsic Raman spectroscopy (IRS), and conduct numerical simulations to 
validate the theory.  As discussed in detail in Part I, diffuse reflectance spectroscopy is used to 
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correct the observed Raman spectra.  The present paper presents an experimental study of 
IRS, using in vitro physical tissue models of various turbidities.  We demonstrate that IRS 
provides a marked reduction in prediction error compared with the uncorrected measurements 
via both explicit and implicit multivariate calibration techniques. 

2. Implementation 

In the companion paper (Part I: Theory and simulations), the following equation for 
implementing the IRS correction was derived: 

OBS
d

t
INT Ram

Rf
Ram

)(

 μ= ,      (1) 

where RamINT is the intrinsic Raman signal observed in the absence of absorption and 
scattering, µt is the reduced total attenuation coefficient (µt = µa + µs), RamOBS is the measured 
(observed) Raman signal, and f(Rd) is a parameter, the calibration function, that depends only 
on diffuse reflectance, Rd, sample geometry, and anisotropy, g.  The functional form of f(Rd) is 
complex, but may be fit by a simple analytical function such as a power law or an exponential 
function. f(Rd) can be obtained experimentally by fixing the concentration of a known Raman 
scatterer and varying the optical properties of the medium, as described below.  Thus, by 
knowing f(Rd), measuring Rd, and extracting µt, RamINT can be obtained from RamOBS.   

The most general method of implementing the IRS correction is the “wavelength-
dependent” approach.  It is appropriate when the diffuse reflectance spectra exhibit significant 
spectral structure.  In this case one employs Eq. (1), wavelength-by-wavelength, to obtain the 
intrinsic Raman spectra.  However, owing to the division operation in Eq. (1), noise and minor 
errors applied at each wavelength may be amplified when applied over the entire spectral 
range, and thus introduce artifacts that lead to higher prediction errors in the subsequent 
multivariate calibration. Therefore, use of the λ-dependent method should be restricted to 
cases in which narrow absorption features that significantly alter the shape of RamOBS 
(compared to RamINT) are present. 

In other cases, however, the diffuse reflectance spectra do not exhibit sharp features and a 
simpler, λ-independent correction method may be used. This will occur when μa and μs, hence 
Rd, do not vary appreciably with wavelength.  An example of interest is our Raman studies to 
measure blood analyte concentrations, which are conducted in the near infrared at 830-1000 
nm [12].  In this case, the amplitude of RamOBS varies with sample-to-sample variations in 
turbidity but its spectral shape is not distorted.  As a result, the λ-independent correction 
method can be employed in which the measured spectra are not corrected, but instead the 
reference concentrations are converted into the number of molecules measured in the same 
sampling volume as the measured Raman spectra.  In the remainder of this paper we will 
implement IRS using the λ-independent method, and illustrate it with physical tissue models 
that are relevant to our blood analyte studies. 

Raman scattering is proportional to the number of Raman scatterers sampled, N, which 
varies with optical sampling volume.  However, most reference techniques measure local 
concentrations of analytes.  We can thus consider a constant optical sampling volume such 
that the concentration, CREF, is equivalent to number of molecules, NREF.  As a result of 
turbidity-induced variations in sampling volume, however, RamOBS measures a quantity NOBS 
rather than NREF.  In order to correct for this, NOBS can be related to NREF in the same manner 
as RamOBS is related to RamINT: 

REF
t

d
OBS N

Rf
N

μ
)(= .      (2) 

For multivariate calibration, NOBS may then be used in conjunction with RamOBS to 
construct a calibration model that is used for prediction.  The resulting predicted concentration 
value NPRED', which gives the actual number of analyte molecules measured, may then be 
converted to NPRED, which is equivalent to the analyte concentration measured by a separate 
reference technique, using Eq. (2) as before. 
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A key advantage of this approach, as opposed to correcting the spectra themselves, is that 
reference concentration measurements are in principle more accurate than spectral data and 
therefore less likely to suffer from the amplification of minor noise or errors associated with 
the application of Eq. (1).   

In summary, Raman spectra may be relied upon to accurately measure a given number of 
molecules, NOBS.  Diffuse reflectance (Rd) and the extracted µt provide the necessary 
relationship between the sampling volume-dependent NOBS and the sampling volume-
independent NREF.  The λ-independent method corrects for intensity variations only, whereas 
the λ-dependent method corrects for both spectral and intensity variations.  

3. Experimental 

3.1 Apparatus 

The experimental setup (Fig. 1) employs an 830 nm diode laser (Process Instruments) as the 
Raman excitation source and a tungsten-halogen lamp (Avantes AvaLight-HAL-S) as the 
diffuse reflectance excitation source.  A laser line filter (Semrock MaxLine 830) is placed at 
the laser output to remove unwanted spontaneous emission that broadens the laser linewidth.  
An RG850 absorption filter is placed at the lamp output to reduce shorter wavelengths that 
may cause scatter within the spectrometer.  The two beams are independently shuttered and 
combined using a MgF2 plate at 45º, with the laser being transmitted and the white light 
source being reflected and adjusted to be collinear.  A photodiode placed at this intersection 
monitors the power of both sources.  The light sources are focused through a small hole (4 
mm dia.) in an off-axis, gold-coated, half-paraboloidal mirror (Perkin-Elmer, Inc.) and into a 
fused silica cuvette (1 cm pathlength) filled with the sample of interest.  Achromatic doublet 
lenses are used to shape the beams.  The beam diameters at the sample are approximately 1 
mm, and the powers are 250 mW and 100 µW for the laser and white light source, 
respectively.  The power level of the white light source is carefully controlled to prevent 
saturation of the CCD detector.   
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Fig. 1.  Schematic of experimental setup.  F1: laser line filter (MaxLine, Semrock); S1-S2: 
shutters; BS: MgF2 plate used as beamsplitter; M1-M2: gold plated mirrors; L1-L2: beam 
shaping lenses; M3: paraboloidal mirror; F2: notch filter; L3: coupling lens; FB: fiber bundle. 

 
Back-scattered Raman and diffusely reflected light are collected with the paraboloidal 

mirror and sent through a holographic notch filter (Kaiser Optical Systems, Inc.) to reduce the 
magnitude of the excitation peak.  Specular reflection from the cuvette surface passes through 
the hole in the paraboloidal mirror and is significantly diminished.   The collected light is then 
focused into a fiber bundle (RoMack, Inc.) that transforms the circular shape of the collected 
light (input end) into a vertical line (exit end, ~400 µm×26 mm).  The exit end of the fiber 
bundle serves as the entrance slit of a modified f/1.4 spectrometer (Kaiser Optical Systems, 
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Inc.).  The light is dispersed with a holographic grating onto a 1300×1340 pixel liquid 
nitrogen-cooled CCD detector (Princeton Instruments).      

Raman spectra and diffuse reflectance (DRS) spectra were alternately acquired, with a 
total of 10 Raman spectra and 10 DRS spectra collected for each sample.  The Raman spectra 
were accumulated with a 2s integration time and the DRS spectra were accumulated with a 
0.5s integration time. Identical excitation-collection geometry was maintained throughout the 
experiment by fixing the cuvette position.  Samples were replaced via pipette following a 
water rinse and two rinses of the sample of interest.  Data were processed off-line for image 
curvature correction, summation, and removal of cosmic rays [13].  Spectra from 280–1700 
cm-1 (850–966 nm) were used in all data analysis.  

3.2 Materials and methods 

Physical tissue models in which scattering, absorption and Raman scattering could be 
precisely varied throughout their respective relevant physiological ranges were used to test the 
applicability of intrinsic Raman spectroscopy.  Two experiments were performed.  In the first, 
elastic scattering and absorption were varied independently while Raman scatterer density was 
held constant.  In the second, the Raman scatterer density was also simultaneously varied.   

The physical tissue models were prepared in water solutions.  The elastic scattering and 
absorption properties were varied over ranges similar to that found in human biological tissue 
[10].  The scattering coefficient, μs, was varied by altering the concentration of Intralipid 
(Baxter Healthcare), an anisotropic elastic scatterer commonly used to simulate tissue 
scattering.  The value, g, for intralipid is between 0.8 and 0.9 [14], as is tissue. The absorption 
coefficient, μa, was varied by altering the concentration of India ink (Super Black India Ink, 
Speedball Art Products company), which possesses a nearly flat absorption profile in the near 
infrared region.  For each specific mixture (sample), 10 Raman spectra were collected and 
averaged.  Scattering and absorption coefficients at the excitation wavelength (830 nm) of 
representative physical tissue models were determined by integrating sphere measurements 
utilizing a look-up table based on Monte Carlo simulations performed by Enejder [15].  The 
value of g for each of the samples was taken to be fixed at 0.8.   

In the first experiment, 49 samples were prepared following a 7×7 matrix in which μs was 
varied from 24 to 130 cm-1 (median 81.6 cm-1) at 830 nm, and μa was varied from 0.08 to 1.3 
cm-1 (median 0.31 cm-1) at 830 nm.  A constant 50 mM concentration of creatinine was 
included in each sample to serve as an indicator of an intrinsically constant Raman signal, the 
concentration of which may be measured incorrectly as a result of turbidity.  The relatively 
high concentration of creatinine enabled higher absorption values to be studied while retaining 
a satisfactory signal-to-noise ratio. 

In the second experiment, 50 samples were prepared with randomized concentration 
profiles and turbidities.  In these samples, μs was randomly varied from 48.4 to 95.1 cm-1 
(mean 73.4 cm-1) at 830,  and μa was randomly varied from 0.09 to 0.18 cm-1  (mean 0.136 
cm-1) at 830 nm.  Two Raman scatterers, glucose and creatinine, were also present, with 
concentrations varying randomly from 5 to 30 mM (mean 16 mM). 

3.3 Data analysis 

Data were initially analyzed via ordinary least squares (OLS) [16] using a seven- or eight-
component model.  The model components include the Raman spectra of fused silica 
(cuvette), water, Intralipid, India ink, creatinine (as measured in water, with the background 
subtracted, glucose (second experiment only), fluorescence (from impurities in the cuvette – 
obtained by subtracting the tenth spectrum from the first spectrum for a representative 
sample), and a DC offset to account for the increased or decreased signal level due to 
scattering or absorption, respectively.   

The OLS model components for the first experiment are shown in Fig. 2.  Each spectrum 
was fit individually to account for varying levels of fluorescence and offset, and the creatinine 
fit coefficients for the 10 spectra in each set were averaged for each sample.   
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Fig. 2. OLS model components for experiment 1. 
 

Data from the second experiment were analyzed via OLS to obtain fit coefficients, as in 
the first experiment.  Additionally, data from the second experiment were analyzed via partial 
least squares (PLS) [17], as described in detail below, to demonstrate the utility of the IRS 
correction method with an implicit multivariate calibration technique. 

4. Results and discussion 

We begin with the first experiment (fixed concentration Raman scatterers in all 49 samples.)  
The observed Raman spectra of the 49 samples are shown in Fig. 3(a).  The associated DRS 
spectra are shown in Fig. 3(b).  To better illustrate the relative change in the DRS spectra due 
to changing optical properties, the DRS spectra in Fig. 3(b) are normalized to 4% intralipid 
with no absorber added (μs = 73.6 cm-1).  Note that any of the samples could in theory be 
chosen as the basis for normalization.  The DRS spectra were not normalized to a white 
reflectance standard such as Spectralon (>99%, Labsphere) because the reference glucose and 
creatinine concentrations were measured in an aqueous solution.  Thus, the “intrinsic” Raman 
spectrum includes the effects of water absorption and it was not necessary to correct the turbid 
samples for this effect.  Because the DRS spectra were internally normalized, Rd is here the 
relative diffuse reflectance rather than the absolute diffuse reflectance.  This difference has no 
effect on the functionality of the IRS correction method. As can be seen in Fig. 3(b), even 
though the intensity variations in this wavelength region (830-960 nm) are substantial, the 
spectral variations from sample to sample, owing to changes in Intralipid and water 
absorption, are minimal.  Thus, we can use the λ-independent correction method. 

 

 
Fig. 3. (a). Raman spectra (b). Relative DRS spectra normalized to 4% intralipid with no 
absorber present. 

 
For the λ-independent method, we compare the observed number of molecules measured 

(NOBS) for each sample to the actual reference concentration (NREF).  For convenience, NOBS 
was obtained through OLS analysis, in which the measured Raman spectrum is fit by a linear 
combination of the spectra of each component in the physical tissue model (e.g., water, 
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Intralipid, India ink, creatinine, fused silica cuvette, etc.).  The fit coefficient for the (constant) 
concentration of the Raman scatterer, in this case creatinine, is NOBS. (It does not matter which 
Raman scatterer is used as the probe to calibrate f(Rd), as the shape of this parameter is not 
analyte-dependent.) In the absence of turbidity, the ratio NOBS/NREF should be 1.  However, 
owing to the effects of absorption and scattering, this value varied significantly, from 0.34 to 
1.14.  NOBS/NREF for each of the 49 samples is displayed in Fig. 4 as a function of μa and μs. 

 
Fig. 4. The ratio of observed to actual values of an analyte at constant concentration showing 
significant deviation from 1 resulting from turbidity distortions, plotted as a function of μa and 
μs.  

 
Following Eq. (2), values of (NOBS/NREF)·µt versus Rd are plotted in Fig. 5.  Data collected 

from the two experiments are combined.  The fit to the data is f(Rd), which for these 
experiments is best represented by an exponential function.  Although the data collection 
periods were two weeks apart and the sample was replaced several times, it can be seen that 
f(Rd) remains constant, as would be expected for similar geometry and anisotropy, g. 

The noise in Fig. 5, i.e., data points that do not lie on the curve, is a result of experimental 
signal-to-noise.  The creatinine signal is much smaller than the signals from most of the other 
constituents; therefore slight modeling errors and noise in the spectral data contribute to error 
in extracting the OLS fit coefficient for creatinine.  As noted above, any Raman scatterer can 
be used to determine the IRS calibration curve, f(Rd).  For example, intralipid itself may be 
used provided that its apparent concentration change due to varying optical properties is 
deconvolved from its real concentration change.  Processed accordingly, use of intralipid data 
with its higher signal-to-noise ratio results in a tight f(Rd) curve equivalent to the curvature of 
Fig. 5, but with no appreciable spread.  However, to prevent potential confusion on the part of 
the reader, we opted to present the analysis using the fixed-concentration Raman scatterer, 
creatinine.  

 

0.4 0.6 0.8 1
0

50

100

150

R
d

(N
O

B
S / 

N
R

E
F
 )

μ t

 

 

Expt 1 Data
Fit to Expt 1
Expt 2 Data

 
Fig. 5. (NOBS/NREF)·µt versus Rd for experiments 1 and 2, showing reproducible curvature. 

Once f(Rd) was obtained, NOBS for each sample was multiplied by the corresponding µt of 
that sample and divided by f(Rd) to obtain NPRED, which may be compared to NREF for 
assessing prediction accuracy.  The root-mean-square error of prediction (RMSEP) for the 
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uncorrected data (NOBS) was 36%, versus an RMSEP for the IRS-corrected data (NPRED) of 
6%.  Thus, IRS significantly improved the prediction accuracy.    

The second data set was designed to illustrate the effectiveness of the IRS correction 
method under an implicit calibration framework [18].  The data were analyzed twice, first 
using OLS (explicit calibration) and then via PLS (implicit calibration).  Prior to implicit 
analysis, the 10 sequential Raman spectra for each sample were averaged and smoothed via a 
Savitsky-Golay function.   

The Raman spectra were then split into calibration and validation sets following two 
different procedures.  In the first procedure, the 50 sample spectra were randomly split into 36 
calibration and 14 prediction sample spectra for 500 independent iterations.  For comparison 
between the uncorrected analysis, in which sampling volume changes are ignored, and IRS, 
the reference values used in conjunction with the calibration data set to generate the 
regression vector [18] were either the actual reference values, NREF, or, for IRS application, 
NOBS, as calculated from Eq. (2).  The number of PLS factors employed in either case was 6, 
which is in accordance with the number of known variables and the size of the calibration set.  
The resulting calibration algorithms were applied to the same validation set to compare 
predictive capabilities.  In the case of IRS application, a final step was needed to convert the 
predicted values NPRED' to NPRED, again via Eq. (2). The boxplot for the 500 RMSEP values for 
glucose generated with uncorrected and IRS-corrected data is shown in Fig. 6.  The mean and 
standard deviation are 0.56 and 0.11 for the uncorrected data, and 0.43 and 0.08 for the 
corrected data, resulting in more than a 20% reduction in mean and standard deviation of 
prediction error by implementing IRS. 
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Fig. 6. Boxplot showing reduction in mean and standard deviation of prediction error by 
application of IRS.  Values were derived from 500 unique splittings of 50 samples into 36 
calibration and 14 prediction sample sets. 

 
In the second procedure the samples were split into calibration and validation sets 

according to the µs′/µa value, where µs′ =µs(1-g) with g=0.8.  Samples having µs′/µa values 
less than 65 comprised the calibration set and samples having µs′/µa values higher than 65 
comprised the validation set (Fig. 7(a)).  Such a splitting replicates the scenario of not 
incorporating the full range of optical property variability into the calibration set.  Typically, 
this scenario results in a calibration algorithm that is not robust.  In other words, applying the 
generated calibration algorithm to samples lying outside the range of the calibration set gives 
much larger prediction error. 
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Indeed, for uncorrected analysis of the data (using NREF for the reference values as 

described above), the standard error of cross-validated (SECV) for the calibration set is 0.47 
mM whereas the standard error of prediction (SEP) for the validation set is nearly twice as 
large, 0.86 mM. For the IRS analysis, the SECV is 0.41 mM and, in contrast to the 
uncorrected analysis, the SEP remains nearly level at 0.42 mM (Fig. 7(b)). This is an 
improvement of over 50% compared to the uncorrected RMSEP.  This scenario illustrates the 
advantages of the IRS correction method. By replacing the reference values with the actual 
number of analyte molecules in the sampling-volume region NOBS, the multivariate calibration 
technique is better able to lock onto the signal from the analyte of interest, generating a more 
robust model and greatly reducing the prediction error.   

5. Conclusions  

We have demonstrated the principles of the intrinsic Raman correction method to obtain more 
accurate, quantitative results in turbid media.  IRS provides a way to overcome inaccuracies 
caused by sampling volume variations as a result of absorption and scattering.  This reduction 
in variability by use of IRS means fewer number of samples over a smaller optical property 
range may be used to form the calibration model. The resulting calibration algorithm is robust 
and provides improved accuracy in prospective studies. 

We note that implementation of the IRS correction method requires knowledge of µt and 
the calibration function, f(Rd).  In the reported tissue phantom studies, the optical property µt 
for each sample was determined with the aid of an integrating sphere.  For experimental 
applications in which this is not possible, e.g., in vivo studies, the optical property information 
may be extracted from diffuse reflectance measurements.  This is a well-developed research 
area and the reader is referred to a number of excellent references on this topic [19-23].  The 
calibration function, f(Rd), may be determined either experimentally or through Monte Carlo 
simulations.  However, practical concerns in slight sampling size and excitation-collection 
geometry variations may justify the experimental approach over a Monte Carlo-based 
approach.   

A related method of analysis to IRS in which variations in µa are considered to be 
insubstantial, and therefore knowledge of the optical properties is not required, will be the 
subject of a forthcoming publication. 
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Fig. 7. (a). 50 samples split into 36 calibration and 14 prediction samples based on optical property 
values. (b). Standard error of cross-validation (SECV) and standard error of prediction (SEP) for 
samples split into calibration and prediction sets based on optical property values. 
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